Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduced endogenous Ca2+ buffering speeds active zone Ca2+ signaling.

Fast synchronous neurotransmitter release at the presynaptic active zone is triggered by local Ca(2+) signals, which are confined in their spatiotemporal extent by endogenous Ca(2+) buffers. However, it remains elusive how rapid and reliable Ca(2+) signaling can be sustained during repetitive release. Here, we established quantitative two-photon Ca(2+) imaging in cerebellar mossy fiber boutons,...

متن کامل

Supralinear Ca2+ Signaling by Cooperative and Mobile Ca2+ Buffering in Purkinje Neurons

Endogenous high-affinity Ca2+ buffering and its roles were investigated in mouse cerebellar Purkinje cells with the use of a low-affinity Ca2+ indicator and a high-affinity caged Ca2+ compound. Increases in the cytosolic Ca2+ concentration ([Ca2+]i) were markedly facilitated during repetitive depolarization, resulting in the generation of steep micromolar Ca2+ gradients along dendrites. Such su...

متن کامل

Brevity of the Ca2+ microdomain and active zone geometry prevent Ca2+-sensor saturation for neurotransmitter release.

The brief time course of the calcium (Ca2+) channel opening combined with the molecular-level colocalization of Ca2+ channels and synaptic vesicles in presynaptic terminals predict sub-millisecond calcium concentration ([Ca2+]) transients of > or = 100 microM in the immediate vicinity of the vesicle. This [Ca2+] is much higher than some of the recent estimates for the equilibrium dissociation c...

متن کامل

Intracellular Ca2+ signaling

Functional intracellular Ca(2+) signaling is essential for the upregulation of the canonical mTOR-controlled autophagy pathway triggered by rapamycin or by nutrient deprivation. Moreover, modifications in the Ca(2+)-signaling machinery coincide with autophagy stimulation. This results in enhanced intracellular Ca(2+) signaling essential for driving the autophagy process. Yet, the mechanisms ups...

متن کامل

Alterations in Ca2+-buffering in prion-null mice: association with reduced afterhyperpolarizations in CA1 hippocampal neurons.

Prion protein (PrP) is a normal component of neurons, which confers susceptibility to prion diseases. Despite its evolutionary conservation, its normal function remains controversial. PrP-deficient (Prnp(0/0)) mice have weaker afterhyperpolarizations (AHPs) in cerebellar and hippocampal neurons. Here we show that the AHP impairment in hippocampal CA1 pyramidal cells is selective for the slow AH...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2015

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.1508419112